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Intoduction

• Mechanism of Confinement : On the lattice there is evidence

of flux tube formation.

• Conjecture : Flux tube ≡ bosonic

string.
q− q

• Effective theories for flux tubes (hadronic strings) .

Write down most general (series) action with vanishing con-

formal anomaly in any dimension. (Polchinski & Strominger)

Write down action as a series in 1/r (r : length of flux tube)

and impose open-closed duality. (Lüscher & Weisz)



• Zero-mass fluctuations of the string → power corrections to

static quark potential

Coefficient of leading correction: Universal & One loop ex-

act: Lüscher term - value = −(d−2)π
24

This is reproduced by all effective theories at leading order.

• Need to go to sub-leading order to distinguish between dif-

ferent string models.

• Can we identify the scale at which string-like behaviour of

the flux tube sets in?



Observables on the lattice

• Polyakov loop correlators:

Accurate ground state energy.

〈P †P(r)〉 =
∞∑

i=0

bi exp[−Ei(r)Nt]

t=0

t=Nt

Polyakov  Loopcorrelator

• Wilson loops :

Suitable for excited states

W (r,∆T) =
∑

α
βα

i βα
j e−Eα(r)∆T t=T

t=T

1

2

qq
Wilson  Loop

flux tube

_

• The string pictures holds at large r ⇒ large loops.



• Note that W (r,∆T) ∝ exp(−r∆T)

• Since we need large r, we must either work with small ∆T ,

or have the means to extract exponentially suppressed signals

from the noise.

• 1st alternative has been followed by Kuti et.al. using asym-

metric lattices and a very large number of basis states.

• Advances in algorithms (e.g. multilevel schemes) and com-

puting power now allow for exponential error reduction and

reliable extraction of expectation values of large Wilson loops.



• Some of the applications :

1. Ground state of the flux tube.

2. Excited states of the flux tube.

3. Profile of the flux tube.

4. Breaking of the flux tube.

5. 3-quark potential.

6. Glueball spectrum in SU(3) & U(1).

7. Energy momentum tensor of the gluonic field.



Algorithm - Ground State

• a ⊗ b = T1(2,2,2,2)

•
(T1)ijkl(T2)jmln=(Tp1)imkn

Averaging is carried out for

Tp1.

• The averaged Tp’s are

multiplied together to form

the averaged propagator

Tf.

• L1, L2 & Tf are multiplied

together to produce the Wil-

son loop.
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Important parameters of the algorithm : time slice thickness
- Tp1 & the number of sublattice updates iupd.
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2-link norm vs iupd for r=2,4,6 and 8 at β = 3



• Potential between static qq̄ pair: (series in r−n)

V (r) ∼ σr + V̂ − c/r + · · ·

Arvis : Ground state of Nambu-Goto string :

VArvis = σr

(

1 − (d − 2)π

12σr2

)1/2

Potential turns complex at r = rc (tachyons).

We look at the first and a scaled second derivative of V (r).

f(r̄) = V (r) − V (r − 1) with r̄ = r +
a

2
+ O(a2)

c(r̃) =
r̃3

2
[V (r + 1) + V (r − 1) − 2V (r)] with r̃ = r + O(a2)

r̄ & r̃ reduce lattice artefacts.



String predictions (d=3)

L.O. f(r) = σ +

(
π

24

)
1

r2
c(r) = − π

24

N.L.O. f(r) = σ +

(
π

24

)
1

r2
+

(
π

24

)2 3

2σr4
c(r) = − π

24

(
1 +

π

8σr2

)

Arvis f(r) = σ

(
1 − π

12σr2

)−1/2
c(r) = − π

24

(
1 − π

12σr2

)−3
2

.

Perturbation theory

Vpert(r) = σpertr +
g2CF

2π
ln g2r + (higher order terms) (1)

σpert =
7g4CFCA

64π with CF = 3/4 and CA = 2.



β r0/a r values lattice iupd # of meas.

5.0 3.9536(3) 2 − 8 363 16000 1600

(ts=2) 7 − 9 403 32000 3200

8 − 12 483 48000 20800

7.5 6.2875(10) 4 − 8 483 8000 1100

(ts=4) 7 − 12 643 18000 1100

11 − 16 643 36000 7200

13 − 17 643 48000 6700

10.0 8.6022(8) 2 − 7 483 16000 2850

(ts=4) 6 − 9 483 16000 200

8 − 14 843 24000 1100

13 − 19 843 36000 2250

12.5 10.916(3) 2 − 9 483 16000 2700

(ts=6) 8 − 14 723 24000 1150



r20f(r) vs r/r0
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fpert(r) : 1-loop perturbation theory.

Dotted line : r20f(r) = 1.65, locates the Sommer scale.



Error ∝ r4
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c(r̃) vs r/r0

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

 0  0.5  1  1.5  2  2.5  3

c(
r)

r/r0

L.O.

Arvis

pert

β =  5.0
β =  7.5
β = 10.0
β = 12.5

c     (r)

c(r)

c(r)
N.L.O. c(r)

−π/24

cpert(r) : 1-loop perturbation theory with β = 12.5 closest to

data and β = 5 farthest.



Interpolating curves

3−d SU(3) Luscher & Weisz

: r  =3.300
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3−d SU(2) Continuum limit

f1, f2 & f3 are of the form a
(
x−2n − x−n + bx−3n

)
with (a, b, n)

(0.444,−0.258,0.357) , (0.458,−0.289,0.691) & (0.442,−0.287,0.498).

2-loop : −g2r0CF
4π

r
r0

+
Ag4r20

2

(
r
r0

)2
with A = 0.013162.



Excited states of the flux tube

Behaviour under charge conjugation and parity − CP

P: Reflect in qq̄ axis : x(κ) → −x(κ)

C: Interchange q and q̄ : x(κ) → x(r − κ)

Combinations ⇔
symmetry channels. string

axis

Transverse
direction
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Algorithm - Excited states
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A wilson-loop with dif-

ferent sources at the

ends, that lie in the

middle of the time-

slices. The slices with

the solid lines are the

time slices with fixed

lines during the sublat-

tice updates.



W1 W2 W3
r New Old New Old New Old

4 0.44 0.15 2.7 7.0 9.2 100
5 0.63 0.21 2.7 8.3 8.6 100
6 0.86 0.28 2.7 4.5 8.8 100
7 1.1 0.35 2.9 7.3 8.8 100
8 1.4 0.45 3.1 5.5 9.5 100
9 1.7 0.56 3.6 10 11 100
10 2.1 0.74 4.2 11 14 100
11 2.7 1.0 5.8 27 22 100
12 3.5 1.7 8.6 88 44 100

Percentage errors for Wilson loops for energies E1, E2 and E3.

β = 5 , T = 8 with r varying between 4− 8. Time ≈ 1100 mins.

Old method: 730 mesurements with no source averaging.

New method: 50 mesurements with 12000 updates for source

averaging.

2-link averaging was same for both methods.



Energy of the string excited states

L.O. En = σr + µ +
π

r
(n − d − 2

24
)

N.L.O En = σr + µ +
π

r
(n − d − 2

24
) − π2

2σr3
(n − d − 2

24
)2

Arvis En = σr(1 +
2π

σr2
(n − d − 2

24
))1/2

We will look mostly at the energy difference En − Em.

Correction factors

λ(T) = α1e−ET

(

1 +
α2

α1
e−δT

)

− 1

T2 − T1
log

λ(T2)

λ(T1)
= Ē +

1

T2 − T1

[
α2

α1
e−δT1

(
1 − e−δ(T2−T1)

)]

.



Excited state energies at β = 5 and β = 7.5.
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Energy difference at β = 5 and β = 7.5.
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The distance corresponding to r
√

σ = 4 is about 1.6 fermi.

At r
√

σ = 4 and ∆E10 the difference between the L.O. and Arvis

curves are < 10%. For ∆E20 the difference is about 20%.

For ∆E20 at β = 7.5, the corrections are still not fully under

control.
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E2 requires a better

“wave function” as

we approach con-

tinuum limit.

Used source (b) to

couple strongly to

E2.

Plot shows E2 val-

ues using source (a)

and (b).
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rected values from
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error bars.



Flux tube profile

• Distribution of electric field in flux tube

a) thickness of flux-tube

b) parameters for effective theory (dual superconductivity)

• 〈O〉 =
〈P ∗PO〉
〈P ∗P 〉 − 〈O〉

eg: Electric Field : OE(n) = iθ̄µν = i(θµν − 2πnµν(n))

1

1=Nt+1

3

5

Nt-1

m m + R i

+ + .... +
[P*PO] =

1

3Ns3(Nt/2) ms, i

n



Conclusions

• For the Lüscher term, the asymptotic value is approached in

a non-monotonic way with r.

• 1-loop perturbation theory holds upto distances of 0.1 fermi.

• Almost impossible to distinguish the type of the string from

the force data.

Differences are at the level of 0.1% at about 2r0.

• c(r) suggests that a Nambu-Goto like behaviour is good be-

yond 2.5r0.



• Onset of string behaviour seems to be pushed towards larger

r as one approaches the continuum.

• We have found a way to use the multilevel philosophy for the

excited states as well.

• It seems that we need to use both the multilevel technique

as well as improved wave functions to go ahead. We have

taken a first step to show how it can be done.

• We are finally in a position to start distinguishing between

different string models as sub-leading effects become visible.


