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Introduction

QCD predicts strong interaction among quarks and gluons at relatively large distance,
while they become asymptotically free at short distance.
This feature leads to the common belief that with the rise of temperature and/or density,
nuclear matter undergoes one or more phase transitions, restoring the spontaneously bro-
ken chiral symmetry and liberating colour to form the quark-gluon plasma.

While the corresponding order parameters, namely the quarkcondensate and the Polyakov
loop, can in principle be calculated with sufficient accuracy at finite temperature, such a
calculation at finite chemical potential is problematic.
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Here we describe an analytic method to investigate the change in nuclear matter as its
density rises.
We find the density dependence of the coupling of an external source, namely the nucleon
currentη(x) with nucleons in the medium.
This current has the quantum numbers of the nucleon and is composed of three quark
fields, which we shall spell out later
B.L. Ioffe, Nucl. Phys. B188, 317 (1981);
Y. Chung et al, Nucl. Phys. B197, 55 (1982).

In exact terms, we consider the ensemble average of the two-point function of the nucleon
current at finite chemical potentialµ and temperatureβ−1,

Π(E, ~p) = i

∫

dtd3x ei(Et−~p·~x)〈Tη(x)η̄(0)〉 (1)

where for any operatorO

〈O〉 = Tr[e−β(H−µN)O]/Z , Z = Tr[e−β(H−µN)]

The coupling parameter stated above appears as the residue of the two-point function at
the nucleon pole.
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This idea is similar to that of Leutwyler and Smilga
Nucl. Phys. B342, 302 (1990), who found the temperature dependence of the residue
at the nucleon pole by evaluating the one-loop diagrams in the framework of the (chiral)
effective field theory. Their calculation requires only theπN interaction.

The difficulty at finite density is that in addition toπN interaction, it involvesNN inter-
action also.

But whereas the effective theory for theπN interaction is satisfactory even to one loop,
the same for theNN interaction is problematic, even when higher loops are included
D.H. Politzer et al, Nucl. Phys. B375, 507 (1992);
S. Weinberg, Nucl. Phys. B363, 3 (1991).
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To overcome this difficulty, we we write down theQCD sum rules for the amplitudes.
Roughly speaking, these are obtained by evaluating the amplitudes in two ways:
One is to write Lehmann representations for them in terms of the physical (hadronic) spec-
trum of the system.
The other is to evaluate the operator product expansion at large momenta.
The two representations are then equated in a suitable region.
In this way one may get a sum rule for the density dependent coupling parameter.

It still involves theNN interaction in the form of self-energies of the quasi-particles.
But These quantities have already been calculated by variational and Brueckner type ap-
proaches using the phenomenologicalNN interaction potentials.
R. Brockmann and Machleidt, Phys. Rev. C 42, 1965 (1990);
de tar Haar and Malfliet, Phys. Rep.
We take over these results in our calculation.
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To increase the sensitivity of the sum rule, we do not evaluate just the sum rule in medium,
but subtract from it the corresponding vacuum sum rule.
Then the non-leading contributions in the low energy regionare expected to be important.
Also the sum rules will involve only the medium dependent quantities.

Now a technical remark. We shall use the real time version of the field theory in a medium,
where a two-point function assumes the form of a2 × 2 matrix.
But the dynamics is given essentially by a single analytic function.
Thus if Π11(p) is the11-component of the matrix amplitude, the corresponding analytic
functionΠ(E, ~p) has the spectral representation

Π(E, ~p) =
1

π

∫

dE ′coth{β(E ′ − µ)/2} ImΠ11(E
′, ~p)

E ′ − E − iE ′ǫ
. (2)

N.P. Landsmann and Ch. G. van Weert, Phys. Rep. 145, 141 (1987)
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Sum Rule

Let us begin with the spectral side of the sum rules. We construct it from the contribution
of the Feynman diagrams of Figs. 1 and 2, in which we draw a blobwhere theNN inter-
action is involved.
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The free propagator of nucleon of Fig. 1(a) contributes

−
λ2

p/ − m + iǫ

Here the couplingλ is given by the matrix element

〈0|η(x)|N(p)〉 = λu(p)eip·x

whereu(p) is the positive energy Dirac spinor. Figs.1(b) and (c) and (d) bring in the self
energy and the vertex correction, modifying the free propagation to

−
λ∗2

p/ − m − Σ(p)
(3)

whereλ∗ is is the corrected coupling parameter andΣ(p) is the self-energy matrix.

We restrict to~p = 0 and decomposeΣ into its scalar and vector parts asΣ = ΣS + γ0ΣV .
As already stated,ΣS andΣV have been calculated by nuclear physicists.
Then Eq. (3) becomes

−λ∗2 γ0(E − ΣV ) + m∗

(E − m1)(E − m2)
(4)

wherem∗ = m + ΣS. The quasi-particle poles atm1 = ΣV + m∗ andm2 = ΣV − m∗

correspond to the nucleon and the antinucleon.
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Next we calculate the loop diagram of Fig. 1(e). We have the general expression for the
imaginary part,

ImΠ
(e)
11 = −π tanh{β(E − µ)/2}

(

3λ2

4F 2
π

)
∫

d3q

(2π)24ω1ω2
[

(−γ0ω1 + m){(1 − n+ + n)δ(E − ω1 − ω2) + (n+ + n)δ(E − ω1 + ω2)}

+(γ0ω1 + m){(−1 + n− − n)δ(E + ω1 + ω2) − (n− + n)δ(E + ω1 − ω2)}
]

(5)

whereω1 =
√

m2 + ~q2, ω2 =
√

(m2
π + ~q2) andn± andn are respectively the distribution

functions for nucleons, antinucleons and pions,

n±(ω1) =
1

eβ(ω1∓µ) + 1
, n(ω2) =

1

eβω − 1
(6)

Terms without then’s are the vacuum contributions, which we reject, as alreadystated
above.
Further, we restrict to zero temperature so that we have to calculate only the terms pro-
portional ton+ → θ(µ − ω1).
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We thus get
ImΠ

(e)
11 = π tanh{β(E − µ)}/2f(E)(−1, 1) (7)

where

f(E) =
3λ2

32π2F 2
πE

√

ω2 − m2(γ0ω − m)

and (−1, 1) denotes the sign of the imaginary part on the Landau cut,µ −
√

µ2 − m2 + m2
π ≤ E ≤ m − mπ and

the unitarity cut,m + mπ ≤ E ≤ µ +
√

µ2 − m2 + m2
π respectively.

Then as already stated, the desired analytic function is given by

Π(e)(E) =

∫

C

dE ′ f(E ′)

E ′ − E − iηǫ(E ′)
(8)

where the subscriptC denotes the difference of two integrals,
∫

C

=

∫

Landau

−

∫

Unitary
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Similarly the Figs. 1(f,g) give

Π(f+g)(E) = 2

∫

c

dE ′ g(E ′)

E ′ − E − iηǫ(E ′)
·

γ0E + m

E2 − m2 − iǫ
(9)

where

g(E) =
3λ2gA

32π2F 2
πE

√

ω2 − m2{(m2 − Eω) + γ0m(E − ω)}

Of course, we have to subtract out the nucleon pole from this contribution, as the complete
nucleon pole contribution is represented by Eq. (4).
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B At this point, we follow a suggestion by Cohen et al [Phys. Rev. C49, 464 (1994).
Of the two quasi particle poles in Eq. (4), the one corresponding to antinucleon is not well
determined as it should have a large width due to annihilation processes.
To suppress its contribution they work with a different amplitude which we adopt here.
Thus separating the Dirac matrix structure,

Π(E) = Π1(E) + γ0Π2(E) (10)

we split each ofΠ1,2 into even and odd parts,

Πi(E) = Π
(E)
i (E2) + EΠ

(O)
i (E2), i = 1, 2 (11)

and deal with the combination,

Π
(E)
i (E2) − m2Π

(O)
i (E2) (12)

(Recal thatm2 is the pole position of the quasi anti-nucleon.) For the poleterm of Eq. (4)
this combination gives

−
λ∗2m∗

E2 − m2
1

(1 + γ0) (13)

The factor(1 + γ0) shows that it is the positive energy part of the nucleon pole.We
reject the other combination(1 − γ0) that is not accurately determined.
We can now collect all the pieces to complete writing the spectral side of the sum rule.
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We now turn to the operator side.
In obtaining the operator product expansion, we need the explicit form of the nucleon
currentη(x)D,i with spin and isospin indicesD andi. Of the two independent possibilities
involving three quark fields, we take here the preferred one,which for proton(i = 1) is

η(x)D,i = ǫabc(uaT (x)Cγµub(x))(γ5γµd
c(x))D

whereC is the charge conjugation matrix anda, b, c are the colour indices. The contribut-
ing operators of lowest dimension in the expansion of the operator product of nucleon
currents arēq, q̄u/q (=q†q in the rest frame of matter,uµ = (1, 0, 0, 0)). Then there are the
operators of dimension four, namely(αs/π)Ga

µνG
µνa, Θf,g ≡ uµuνΘf,g

µν with

Θf
µν = iq̄γµDνq −

m̂

4
gµν q̄q (14)

Θg
µν = −Gc

µλG
λc
ν +

1

4
gµνG

c
αβG

αβc (15)

wherem̂ is the average quark mass ofu andd quarks andGa
µν are the gluon field strengths.

Of these we retain only the operatorΘf , as the coefficients of the remaining are small,
arising from three contractions of the quark operators in the two point functions.
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Among dimension five operators, the coefficient ofq̄σµνG
µνq turns out to be zero; the

other operators bringing in small contributions to the sum rules and are ignored.

Of dimension six operators, we retain only the quark operators that have no derivatives or
gluon fields.
In the case of vacuum sum rules, their vacuum expectation values may be related to the
square of the vacuum expectation value ofq̄q, using factorisation or vacuum saturation. A
similar approximation can be made for the ensemble average but simple model estimates
seem to suggest that it may not be as good as the vacuum case.

At this point we follow Cohen et al to use factorisation and then replace the scalar-scalar
condensate by the parametrisation,

〈q̄q〉2 → (1 − f)〈0|q̄q|0〉2 + f〈q̄q〉2 (16)

wheref is a real parameter.
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In terms of the above operators, the operator expansion gives

Π(E,~0) → −
2E

3E2
(γ0s2 +2sv)+

1

4π2
(s+4vγ0)E2 ln(−E2)−

5

6π2
γ0〈Θf〉E ln(−E2) (17)

where to first order in nuclear density,

s ≡ 〈ūu〉 = 〈d̄d〉 = 〈0|q̄q|0〉+
σ

2m̂
n ; v ≡ 〈u†u〉 =

3

2
n ; 〈Θf〉 =

3

4
mAfn, Af = 0.62

(18)
Heren is the nucleon density, related to the Fermi momentumpF by n = 2p3

F/(3π2). The
equilibrium nuclear matter density isn = (110 MeV )3 corresponding topF = 1.36 fm−1

The quantityAf arises in the nucleon matrix element of the quark energy-momentum
tensor,

〈p|Θf
µν|p〉 = 2Af(pµpν −

1

4
gµνp

2)

The constant is given by an integral over the nucleon structure function in the deep inelas-
tic region. AtQ2 = 1 GeV 2, the integral givesAf = .62.
A.D. Martin et al, Eur. Phys. J. C4, 463 (1998).
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Excluding vacuum contributions and working with the combination of amplitudes given
by Eq.(12), we get at Euclidean momentaE2 = −Q2, Q2 > 0,

Π(E)−m2Π
(O) → −

2m2

3Q2
(γ0s2+2sv)−

1

4π2
(s+4vγ0)Q2 ln(Q2)+

5

6π2
γ0〈Θf〉E ln(Q2) (19)

It is now simple to take the Borel transform of the spectral and operator sides and get the
desired sum rule

λ∗2 = λ2em12/M
2

[

m − m2

2m∗
e−m2/M2

−
3

64π2F 2
πm∗

∫

C

dE

E
(E − m2)

√

ω2 − m2(ω − m)e−E2/M2

+
3gA

32π2F 2
πm∗

∫

C

dE

E
(E − m2)

√

ω2 − m2(ω − m)2
(E + m)

E − m)
e−E2/M2

−
M 2

2λ2m∗

{

2〈0|ūu|0〉m2

M 2

(

1 +
σ

3m̂
f
)

+
M 2

8π2

( σ

m̂
+ 12)

)

V2 +
5mAf

8π2
m2V1

}

n

]

(20)

whereV1 = 1 − eW 2/M2
, andV2 = 1 − (1 + W 2/M 2)e−W 2/M2

The deviations ofV1,2 from
unity represents the contribution from the high energy region on the spectral side.W is a
parameter determining the onset of this contribution.
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Evaluation of Sum Rule

A preliminary result is shown in Fig.2.
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It is seen thatλ∗ decreases with density. Clearly it cannot be trusted up to the point where
it vanishes. Nevertheless, its vanishing atn ≃ 2n0 does indicate that a phase transition
takes place at not too high a density.
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Discussion

Let us recall some of the salient features that has gone into the derivation of this sum rule

1. The most important feature of our sum rule is that it not just the sum rule in the
medium, but is one obtained from it after subtracting out thecorresponding vacuum
sum rule. Thus we subtract out the vacuum nucleon pole from the expression (4) and
omit vacuum contributions from imaginary parts of loop diagrams like that given by
Eq. (5). Also on the operator side, we omit vacuum contributions, in particular, the
dominant vacuum contribution corresponding to the unit operator is subtracted out.

2. We also include the density dependent contributions fromall one loop diagrams. THe
values of nucleon self-energies are not determined by the sum rules, but are taken from
earlier calculations by nuclear physicists.

3. We write the sum rule for the amplitude (12) to suppress thecontribution from the
quasi-antinucleon pole and consider only the sum rules proportional to(1 + γ0).

Our work shows that this sum rule, if evaluated correctly, can give significant information
regarding the approach of nuclear matter to the quark-gluonphase with the rise in its
density.


